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Using a new type of harmonic superspace variables, we reduce the N = 2, D = 10 Brink- 
Schwarz (BS) superparticle to a system whose constraints are (i) first class, (ii) functionally 
independent and (iii) Lorentz covariant. We show that these features are essential for a correct 
covariant quantization. QBRsr is first rank. By using it to second quantize the system, we obtain a 
covariant off-sheU unconstrained superfield action of the linearized D = 10 type IIB supergravity. 
A corresponding procedure for the Green-Schwarz (GS) superstring is conjectured. 

1. Introduction and motivation 

In the last two years a lot of progress has been made in formulating Lorentz 
covariant first and second quantization procedures for the Ramond-Neveu-Schwarz 
superstrings [1,2] (for a long list of references see the book [3]) within the 
Batalin-Fradkin-Vilkovisky-Becchi-Rouet-Stora-Tyutin (BFV-BRST) approach [4, 5]. 
In view of the importance of manifest space-time supersymmetry (anomaly cancella- 
tion, finiteness, vanishing cosmological constant etc.) for the superstrings [6, 3], 
much interest was focussed also on the Green-Schwarz (GS) superstrings [7, 8]. 

The original form of the latter exhibits, however, two major problems: 
(i) It contains Second class constraints which lead to highly complicated canoni- 

cal Dirac brackets [8]. In particular, for the Brink-Schwarz superparticle (BS) [9,10] 
(the zero-mode approximation of the GS superstring) the ordinary superspace 
coordinates x~, O~ do not commute and the initial connection with the geometry of 

the embedding superspace is lost. 
(ii) The first class constraints - the local fermionic r-symmetries - are function- 

ally dependent when expressed covariantly. In the terminology of refs. [11,12], they 
form a reducible set. In ref. [13] it was pointed out that for the GS and BS systems, 
the BFV procedure [11,12] of treating correctly reducible constraints breaks Lorentz 
covariance if the level of reducibility is to remain finite. 

Siegel's modification [14,15] of the GS superstring does not address problem (2). 
Moreover Siegel's superparticle [15] changes the physical content [16] of the BS 
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superparticle. Consequently it does not describe anymore the zero-mode approxima- 
tion of the GS superstring. 

Thus, even the simpler problem of covariant (first and second) quantization of the 
Brink-Schwarz superparticle had not been solved previously (see ref. [3] for an 
update). 

Recently [13] a new formalism was proposed which solves the problems (i) and 
(ii) for the N = 2 superparticle in D = 10 (the only relevant space-time dimension 
for the superstring generalization). The main ingredient was the introduction of 
additional pure gauge degrees of f r eedom-  Lorentz spinor harmonic variables. 
These were crucial in order to obtain an irreducible set of constraints without 
destroying explicit Lorentz covariance and without altering the physical content of 
the model. However in this formalism QBRST was of rank two. This made it a very 
cumbersome tool to use in the eventual covariant second-quantization of the system. 
Also, ref. [13] did not succeed in extending off-shell the covariant reality condition 
for the superfield wave function. This was an obstacle for the off-shell uncon- 
strained superspace formulation of the linearized D = 10 type liB supergravity (i.e. 
the second quantized D = 10, N = 2 BS superparticle). 

The purpose of the present paper is threefold: 
(a) We present a significantly simplified D = 10 harmonic superspace for the 

N = 2 BS superparticle. In particular the rank of the BRST charge is one. Also, the 
geometrical meaning of the new harmonics is much more transparent. 

(b) Within the framework of BFV-BRST approach for the covariant second 
quantization of constrained systems [17] we find an off-shell unconstrained super- 
field action for the linearized D = 10, N = 2 type liB supergravity. 

(c) We elucidate the mechanism of cleaning the system from second class 
constraints without changing its physical content. In essence we recognize half of 
the second class constraints as the gauge fixing conditions for the other half which 
are thereby recognized as generators of new gauge transformations. By renouncing 
the gauge fixing these generators become first class constraints. 

We conjecture that the same mechanism acts also in the case of the GS 
superstring. This conjecture is presently under study. 

The plan of the paper is as follows. 
In sect. 2, the classical N---2 BS superparticle is reformulated. We present the 

idea of expressing it as a system with first-class constraints only (at that stage these 
constraints are still dependent). The rigorous formulation of the idea is postponed 
until sect. 4 because it requires the formalism of sect. 3. 

In sect. 3, a new type of D = 10 harmonic superspace is introduced with both 
Lorentz-vector and Lorentz-spinor harmonic coordinates realizing the coset space 
SO(l, 9)/(SO(8) × SO(l, 1)). 

These harmonics are used in sect. 4 to construct a new (physically equivalent) 
form of the action introduced in sect. 2. In this form, the whole set of constraints 
becomes irreducible. (We call it in short the harmonic superparticle action,.) 
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Covariant first quantization h la  Dirac of the N = 2 harmonic superparticle is 
performed in sect. 5. 

The BFV-BRST covariant second quantization is discussed in sect. 6. The first 
quantized BRST charge is shown to be of rank one and a covariant off-sheU reality 
condition for the superfield wave function is found, enabling us to accomplish the 
task (b) declared above. 

Appendices A and B are of technical nature and collect our spinor conventions 
and some useful algebraic properties of the harmonic expansions, respectively. 

Appendix C contains the proof of the equivalence between the following two 
quantized ~ la Dirac systems: 

(a) A system with 2n real second class constraints. 
(b) A system with n holomorphic first class constraints. 
Throughout the paper we repeatedly check the equivalence of our covariant 

results with the known results about the point-limit of the fight-cone gauge of the 
GS superstring (the type IIB supergravity). We regard this correspondence as our 
criterion of success. 

2. Reformulation of  N -- 2 B S  superpartide 

The standard form of the BS superparticle action in N = 2, D = 10 superspace 
(x~', 0~), A = 1,2, reads: 

S= f [p,O.x  +pg" O.a - Hr]. (2.1) 

H à  = Xp 2 + +~da aa . (2.2) 

In eq. (2.1), 0~ are left-handed Majorana-Weyl (MW) spinors* and the fermionic 

constraints 

(2.3) 

( dAa, dB# } Pa = i28AB~ aa (2.4) 

form a mixture of 16 first-class and 16 second-class constraints on the constraint 
surface p2 = 0. Indeed, only half of the ~ are arbitrary Lagrange multipliers, the 
rest, being determined by the consistency of the dynamics generated by Ha` with the 
whole set of constraints, see ref. [18]. 

* See appendix A for our spinor conventions. 
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For the present purpose it is convenient to use the holomorphic representation for 
the fermionic part [19] of the phase space: 

( x ' ,  8,,, O,,; p,, ~:, p~ ) , 

0~ = ~-~2 ( 0~ + i0~ ) , 

0~ -- f~2 ( 02 - i0: ) , 

p ; =  f~2 ( p~" + ip~a), 

= f f  ( - i # o ) .  (2.5) 

In this representation the action (2.1), the Lagrange multipliers and the constraints 
(2.3) read: 

S=fd'~[p~,a,x~'+p~O,O~+p~O,O.-Hrl, (2.6) 

H r = Ap 2 + ~p,,d ~ + ~/~d ~ , (2.7) 

1 1 
, o =  + 

~a = ~-2 (l~a--1 i1~2), 

da= v~ ( d l a - i d 2 a ) =  --ifi;--~aOO#. (2.8) 

The Poisson brackets (2.4) are rewritten in terms of the holomorphic constraints 
(2.8) as: 

(a",  dP}p B = {d", dfl}en = O, (2.9) 

( d", 9/~ },a = 2i~ "~- (2.10) 

In general it is always preferable, and sometimes essential to work with first-class 
constraints only. (The appearance of inverses of operators in the Dirac brackets 
might interfere with a local formulation of the theory [3].) Therefore, instead of the 
initial mixed set of 16 first- and 16 second-class constraints d ~, d~ (2.8) in (2.7) we 
want to take the following set of constraints [13]: 

d '~ = 0, (2.11) 

~ d  ~ = 0. (2.12) 
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The set (2.11), (2.12) is first-class on the surface p2 = 0: 

( d", (~a )p  }pB = - i 2 8 ~ p  2 • (2A3) 

The set (2.11), (2.12) is not independent on the surface p2 = 0 because the matrix/~ 
has rank 8 on that surface. Therefore, eq. (2.12) represents only half of the 16 
constraints d". The other half of the constraints a7 ~ (to be explicitly exposed in sect. 
4) is now immediately recognized as a set of 8 (partial) antiholomorphic gauge 
fixing conditions for the complex gauge invariance generated by the 16 holomorphic 
first-class constraints d% The general procedure to treat 2n real second-class 
constraints as n holomorphic first class constraints is explained in the appendix C. 

Disregarding the gauge fixing conditions, is of course not affecting the physical 
content of the theory. Thus, the classical action with full gauge invariance restored: 

Sgauge inv ~- f dr [ p~ 8,,x ~' + Po 8,:0 + ~o 8~.0 - Hgau~e inv ] , (2.14) 

Hgaugeinv=Xp2 +~,d +~"(~d), (2.15) 

is physically equivalent to the original BS N = 2 action (2.1). (The technical details 
of the proof are given in the appendix C.) 

The counting of the degrees of freedom also comes out right because the new set 
of 24 first-class constraints kills as many degrees of freedom as the initial set of 16 
first-class plus 16 second-class constraints. 

The details of this analysis will be given in the sect. 4. 
We remark parenthetically that Siegel's modification would correspond to the 

elimination of a half of d" in addition to the half of d ". This would be overkill, 
because it would throw away the gauge generators together with the gauge fixings, 
leaving the system with less gauge invariances and therefore, with more physical 
degrees of freedom [16]. As emphasized above, the half of the d ~'s (2.8) which used 
to be second-class in (2.10) becomes first-class once half of the d ~'s is eliminated to 
obtain (2.12). 

After this preliminary description of the solution of the problem (i), one has still 
to discuss the solution of the problem (ii). 

Indeed, the first-class part of the constraints d" is expressed through the 
16-component spinor constraint ~d. However, in a proper quantization procedure 
one has to take into account that only 8 of these constraints are functionally 
independent. As already stressed in ref. [13] the correct way to do it without spoiling 
Lorentz-covariance is to introduce additional degrees of freedom - harmonic vari- 
ables - carrying Lorentz-spinor indices. 

In the next section, we introduce a new D = 10, N = 2 harmonic superspace 
which is substantially simpler than the one discussed in ref. [13] and it has more 
geometrical meaning. 
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3. D = 10 harmonic superspace with spinor harmonics 

The concept of harmonic superspaces was first proposed in ref. [20] as a 
fundamental  ingredient of the unconstrained, off-shell superfield formulation of 
N = 2, 3 matter-, gauge- and supergravity theories in D - - 4 .  The main idea is to 
reduce by means of harmonic variables a global symmetry group G of the supersym- 
metric theory to an appropriate subgroup H, where the harmonics serve as "bridges" 
converting G-covariant indices into H-covariant ones, preserving at the same time 
the G-symmetry.  

In D = 4, one has the case G = SU(N)  (the automorphism group of N-extended 
supersymmetry) and H = U(1) N-1 for N = 2, 3. 

Subsequently, a different kind of N = 1 harmonic superspace in D = 1 0 -  the 
light-cone harmonic superspace-  was introduced [21] where G = SO(1,9) is the 
Lorentz-group and H = SO(8)× SO(l, 1) is the so called light-cone preserving 
subgroup. We would like to warn the reader that this name is somewhat misleading: 
the group H is local and internal, and so is the "light cone" which it preserves. 
There is no tampering with the Lorentz-invariance. 

The corresponding harmonic variables ( u f ,  u~) were defined as follows [21]: 

U~U+-t~= 0 ,  

+ - p  u~u = - 1 ,  

u~uJl~ = ~ i j ,  

ui~u±~=O, (3.1) 

where H = SO(8)× SO(l, 1) acts as local rotations on the internal SO(8) indices 
i, j = 1 . . .  8, and SO(l, 1)-indices +.  

Yet another type of harmonic superspace in D = 10 [13] contains the harmonics 

which are defined to satisfy the constraints: 

(3.2) 

(3.3) 

These harmonics were introduced as "bridges" converting D = 10 left- (right-) 
handed MW spinor indices a, ~ into SO(8) (s), (c) spinor indices a, 6. 

As explained in ref. [13] the use of harmonics carrying D = 10 MW indices is 
inevitable in order to express in a functionally independent way the first-class part 
of the constraint d ~. 

We now propose a new D = 10 harmonic superspace which combines the nice 
features of both [21] and [13]. It consists of the following objects: /3a ±1/2 - - tWO 
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D = 10 (left-handed) MW spinors and u~-e igh t  ( a =  1 . . . . .  8), D =  10 Lorentz 
vectors satisfying the constraints: 

a p . =  a ( 3 . 4 )  Up.Ub ~b " 

Under the local rotations of the internal local subgroup H = SO(8) × SO(l, 1), u~ 
transform as SO(8) (s)=spinors whereas, v~ 1/2 carry + ½ charge under SO(l, 1). 

The geometric meaning of (3.4) becomes immediately clear when one recalls the 
celebrated D = 10 Fierz identity (cf. e.g. ref. [3]): 

(op.) °~(o~) ~ + ( o y ' ( o 0  °~ + (op.)~°(o~)~ = 0. (3.5) 

Indeed, the following composite vectors 

u~ = v~ 1/2( o~,)'~ v~ 1/2 (3.6) 

are identically light-like because of (3.5). Using the set of u~ (3.6) together with u~ 
from (3.4) one obtains a realization of the coset-space SO(l, 9)/(SO(8) × SO(l, 1)) 
as in (3.1). The only difference is that SO(8) is taken in the (s)-spinor representation 
instead of the vector one. 

Henceforth, we shall use the shorthand notations: 

u~ as in (3.6), 

tL a o a ~ o  Up., 

o+=-o~'(v+l/2%v+l/2). (3.7) 

The following harmonic differential operators (which preserve the harmonic 
constraints (3.4)) will play an important role in the sequel: 

0 0 
D a b  a b , 

= Up. OUp, b --  Up. 0 Up. a 

0 0 
D + a  = + _ _  .q,_ l o - 1 / 2 o +  f f a - -  

up. Oup. a 0v_1/z , 

0 0 
0 - + =  (3.8) 

2v,, 0v+1/2 Ovfl/2 • 
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D "h, D -+ and D +~ form a closed algebra and the first two of them are easily 
recognized as generators of SO(8) × SO(1,1) where the subgroup SO(8) is taken in 
the (s)-spinor representation: 

[D ab, D cd ] = CbcD ad _ cacobd-~- cadD bc __ cbdD ac, 

[ D - + , D  ab] =0 ,  

[D ab, D +c ] = CbcD +a _ CaCD +b ' 

[ D-+ ,  D +a] = D +a, 

[D +a, D +b] = 0. (3.9) 

(C ab denotes the D = 8 chiral charge conjugation matrix.) 
As in all previous types of harmonic superspaces [21, 20], the general harmonic 

superfield is defined by the following harmonic expansion: 

O0 

E [U~'''U~:]singletpartin(al...an ) 
n ~ m ~ O  

×v~1/2.. v+l/2v -x/2 v-1/2~ "''''"-~1 .... 2-(x,O,O), (3.10) 
• Ot m a m +  1 " • • a 2 m  

i.e. the coefficients are ordinary superfields which do not carry any indices of the 
internal subgroup SO(8) × SO(l, 1). This property will have important implications 
for the substantial simplification of the superparticle constraint algebra in the 
following sections. 

4. N - -  2 harmonic supe~article 

Equipped with the harmonic formalism of the preceding section, we can now 
explicitly solve the problem posed in sect. 2: the Lorentz-covariant separation of the 
first-class and second-class constraints from the constraints of the action (2.6)-(2.7). 
The solution is provided by the following decomposition of each of the 16-compo- 
nent D = 10 spinors d ~, d ~ (2.8) into direct sums of two 8-component SO(8) 
(s)-spinors: 

da = 2 ( °av+l /2 )ada l /2  + (P+)- - l (~o+oav- -1 /2)  a-+l/2ga 

where 

got = ( p + ) - l ( o a l ) + l / 2 ) a ( d ) + l / 2  + ( ~ o + o a v - 1 / 2 ) ~ g a l / 2  ' (4.1) 

p+ _-/3 + 1/2~/) + 1/2 
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d-1/24 = (2p + )-1(/) + 1/20a~d), 

a+ 1/24 = ( o  ÷ ' / 2 o a ~ a )  , 

g+x/2o= ½(v-~/2o°o+a) ' 

g-1/2a  = (2 p + ) -  l( v-1/2oao + d )  . 

(4.2) 

(4.3) 

(4.4) 

The canonical Poisson brackets (2.9), (2.10) are now written as: 

{ d-1/24, d+l/2b} PB = I iCabp 2, 

{ g+l/2a, ~-1/2b } pB_~ icab, 

(4.5) 

(4.6) 

rest PB = 0. 

Let us emphasize that the SO(8) and + indices are internal and, therefore, all the 
expressions are explicitly Lorentz-covariant. In particular, the formulation of the 
second class constraints (4.3), (4.4) in a covariant form is a long awaited result 
[22, 23, 3] for the BS superparticle. 

From (4.6) it is clear that we can take d ~ (or, equivalently, d -1/2a and g+1/2~) 
and d +1/24 as covariant functionally independent first-class constraints of the 
N = 2 superparticle whereas g-1/2 ~ is interpreted as a gauge fixing condition for the 
first-class constraint g+ 1/2 a. 

Thus we arrive at the following form of the action for the D = 10, N = 2 BS 
superparticle: 

S,~o,o = f d, [p, a.x, +p; aL + ~  aL +Pa a.U"a 

-[-pvT't/2et 0,r0~ 1 /2 I  Hhavmome] , (4.7) 

_ - -  + 1 / 2 4  A+-d-+ Hh,~mo.ic=~pZ+~aa"+~a(d ) +Aabdab+ + A - ~ d  +a . (4.8) 

The constraints dab, d +-, d +a in (4.8) denote the classical counterparts of Dab, 
D -+, D +a in (3.8), respectively. 

This action contains only first class, functionally independent, constraints and is 
therefore suitable for the BFV-BRST covariant procedure without need for intro- 
ducing new "constraints for the constraints". We will see in the sequel of this article 
that, upon quantization, it gives correctly the point-limit of the GS superstring, i.e. 
the type l iB supergravity in D = 10. 
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Because of the kinematical constraints (3.4) on the variables u~, v + 1/2 defining 
our harmonic superspace, their conjugate momenta are similarly kinematically 
constrained: 

p~(aub)  = 

pua(o+ 1 / 2 : 0  + 1/2) = O, 

v+I/2p~ -I/2~' + v£1/Zp +I/2'~ = 0. (4.9) 

The constraints (3.4) and (4.9) may be equivalently regarded as a system of 
conjugated second-class constraints and thus all subsequent Poisson-bracket rela- 
tions are in fact Dirac-bracket relations on the surface defined by (3.4) and (4.9). 

The spinor constraint: 

v + x/2oa~d= d+ 1/2a (4.10) 

is precisely the functionally independent Lorentz-covariant first-class part of the 
constraint de. 

The algebra of constraints in (4.8) reads (only the nonzero PB's are listed): 

( d e, d-+ 1/2a }PB = - - i 2 p 2 o ;  1/2( oa ) f l  a ' 

( d-+,  d-+1/2" }PB = ½ d+ 1/2 a , (4.11) 

{ dab, d-+1/2c }PB = Ct'Cd+1/2" - CaCa+l/2 b, (4.12) 

dab, d +-, d +~ commute among themselves as in (3.9). 
Any smooth function on the phase space of the superparticle system (4.7) 

including classical observables, is defined by the following harmonic expansions: 

a x a. a.+~ pa.+k ] 
F (  z,  u, v; Pz, P . ,  Po) = Y'~ [ u~ .. .  u~.p.,.+a . . .  ul~n+k lsingletpartin(al . . . . .  an+k) 

X V~ 1 /2 . . .  V + 1/2V - 1/2 V - 1/2n ill, + 1/2 
o t m  o t m + l  " " " ~ [ m + r  a f r o  " " " 

+ i/2p:,+. -1/2 .. . p:°+,_..-1/2 

X F/~l,. [ [ .~.:+;, r . . . . .  ot'+' (Z,  p , ) ,  (4.13) 

oa t~±1/2 na not, +1/2 where, of course _~, v~ , ~%, ro - are constrained on the surface (3.4), (4.9). 
Let us emphasize, that the coefficient functions in the harmonic expansion (4.13) do 
not carry any SO(8)× SO(l, 1) internal indices, precisely as in the case of the 
harmonic superfields (3.10). 

Physical observables must have vanishing Poisson brackets with all constraints in 
(4.8). Starting with the relations: 

{F ,  dab}p B = {F,  d -+  }pB = (F ,  d+a}p B --- 0, (4.14) 
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where F is of the form (4.13), one can show that such functions do not depend on 
the harmonic coordinates and their conjugate momenta. Thus, the harmonics are in 
fact pure gauge degrees of freedom in the harmonic superparticle system (4.7). 
Thereby, the harmonic superparticle system (4.7) is physically equivalent to the 
usual N = 2 BS superparticle. We shall discuss the equivalence proof in more detail 
directly on the first-quantized level in the next section. 

5. Covariant first quantization 

According to (4.8), the covariant first-quantized Dirac-constrained equations for 
the harmonic superparticle read: 

p 2 * = O ,  (5.1) 

D"O = O, (5.2) 

= = o ,  ( s . 3 )  

oabcz b ----" 0 ,  ( 5 . 4 )  

D - + ¢  = O, (5.5) 

D+"*  = 0, (5.6) 

where now 
0 

0 

and D ~b,D - + , D  +~ are as in (3.8). O = ~ ( z , u , v )  is (3.10) taken in the p~, 
momentum space, i.e., z = (p~, 0, 0). 

We want to analyse the physical content of the system characterized by (5.1)-(5.6). 
The main effort will be invested now in the study of the effects of the conditions 
(5.4)-(5.6) on the form of the superfield (3.10). In spite of the technicalities involved 
in this study, its outcome will be very simple: the variables u, v are pure gauge 
degrees of freedom which are eliminated on-shell by the constraints (5.4)-(5.6). The 
reader not interested in the details, may as well jump to the conclusion of this 
analysis: equation (5.11). 

Accounting the harmonic constraints (3.4), the general solution to (5.4), (5.5) is of 
the form (see appendix B): 

oo 

* ( z , u , v ) =  E u  + + - [~l~ " '"  utM.U["h " '"  U~ l .  
n=O 

x { + (5.7) 
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with the nota t ions :  

+ 
U-p-[ 1 =  V -+l/2ff[p`]U -+1/2  

rip`] = v + l /2o[p~lV  - 1 / 2  , 

where  o[~ 1 denote  antisymmetrized products  of  one, three and five D = 10 o-matrices 

(see appendix  A). Note  that  u ;  do  not  enter in (5.7) since any SO(8)-invariant 

combina t ion  of  u~ 's  can be expressed solely in terms of  u f  on the surface (3.4): 

a _ + -- -- + 
Up`gay - -  ~p`v + + , Up` $1 v UI~ U v 

8 
a l  as  ~1o + - ~ + - - + 

~,al.. .as$lp`l . . .  Ull,8 ~ -~1 '1 ' ' "  Ul, gU,lo k121[~] ,gk ' k ' JC  Up`kUl, k'JC Up`kUl~kl . (5.8) 

Fur ther  we have used in (5.7) the fact that  a p roduc t  of  two v , e ~ / 2 ' s  can ,  

equivalently,  be reexpressed (cf. eq. (A.4)) in terms of  u[~] a n d / o r  rtx I as: 

1 1 
_ v ~  1 / 2 v d  1/2 = - - o p `  " ±  

16 -a"p` + - - , , p ` ~ - - - p ` 5 , , +  32(5!) ~-a -~1 ... ~,s' 

1 1 1 
- v ,+X/2v~ z/2 = 1---do~,~rp` + - - o  p x̀ ""p`~r - - o  r '  "p`~r (5.9) 

16(3!) ~ p`,---p`3 + 32(5!) "~ ~1--.~,5" 

Also,  in appendix  B it is shown that, contractions among  Lorentz  indices in 

p roduc t s  + + + u M u t ,  ] or u[p`]rtx I are either 0, or are expressed in terms of  + + g [ t q g [ v ]  o r  
+ 

ut~lrtx I with shorter  index sets [#], [v], [~]. The proof  uses the Fierz identity and the 
ha rmonic  constraints  (3.4). 

Therefore,  the only allowed trace parts  in the tensor coefficient superfields in (5.7) 
are o f  the form:  

y(~[~h ...t~,],)(M, ...M,)tx, ... x~] _ ~ ~x@([p`h...M~)(t~h ...M,)x2 ... x5, 

y([p`h ...Mog,[,h...[pl,)[xl ... M] _ ~vhll~([Ml -.-[p`]n)([~']2 -. -[Pln)h2 . . .  h5 

~(~[tq2 ...[p`],)([vt ... vs]Iv)2 ...[vl,) _ ~vl~([M2 ...[N,)(p2 ... pdvh...[p],), 

~ (It,1 ... p`d[t,h ...[MnX~[~h ... [~1,) _ 7/m'~(p`2 ... P̀ 5(M2 ..-[Mn×[~h ...[,],), 

qb([~l --. P`5]tM2 ... [to,)([~l ... vsl[vh ... [p]~) _ ~ t ~  ~(~2 ... ~dM2 ... [M,)(~2 ... ralph... [~]n), (5.10) 

and  similarly for  y(M,...)(t,h...)txl. With  the proper ty  (5.10) of  the expansion (5.7) 

and  account ing  for the relations (B.2) it is now straightforward to show that  (5.6) 
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I ~  [~]'''')([l~]l " ' ' ) ( Z )  = O, n >/1, 

y t l, )(H, • ) tXl (z )  = 0 ,  n > / 0 .  (5.11) 

Consequently, the only surviving coefficient superfield in (5.7) is ~0(z). 
Since v~ +*/2, u~ are arbitrary coordinates of the harmonic coset space (3.4), then 

(5.3) implies that, in fact, • = ~0(z) satisfies the equation 

(/~D) ,~0 (z) = 0. (5.12) 

In conclusion we find that the set of constraint equations (5.1)-(5.3) for the solution 
= O0(z) of (5.4)-(5.6) precisely coincides with the set of Dirac constraint equa- 

tions for the system (2.14). Therefore the systems (4.7) and (2.14) are physically 
equivalent. This verifies (at the first quantized level) the equivalence between the 
standard BS and the harmonic superparticle systems in D = 10, N = 2. This check is 
by no means trivial because, in previous situations, trials to improve the constraint 
structure of the system by the introduction of new "gauge" variables ended in 
significant changes of the physical content of the theory [15, 21]. 

The contact with the light cone formulation can be achieved by solving (5.12) in a 
particular Lorentz frame. The result will be that in the light-cone gauge, the 
harmonic superparticle produces the type liB supergravity. Later, we will find that, 
in fact, our formulation allows us to obtain the linearized type IIB supergravity also 
covariantly. 

Let us now introduce the standard light-cone projectors (we use the hat to 
distinguish these quantities from the Lorentz-invariant (3.7) used throughout the 
rest of the paper): 

½8 ±8 ~, 

6 ±= ~/~-(o ° + 09). (5.13) 

Returning to the x representation, the solution of (5.1), (5.2), (5.12) then reads: 

= X , 

p 2 ~ o : O  , (5.14) 

where 0 is an 8-component SO(8) (s)-spinor obtained from 0. by the light-cone 
projection: 

1 ^ _ ^  + 
= o 

/3 ± = ¢r~-(p°_+pg). (5.15) 
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After imposing the reality condition [24] (* denotes usual complex conjugation): 

[¢o(X,O)]* (r)'fd=O' ¢.v°'/ = exp/ , - -~-  ] ¢0(x;/~' ) (5.16) 

the light-cone superfield ~o(X, 0) provides a description of the linearized D = 10 
type IIB supergravity [24]. Its off-shell light-cone action reads 

Slight_con e = I f dlOx dS/~ ¢o (x,/~) p 2 ~o (x, ~). (5.17) 

We expand ~o in terms of its component fields: 

8 1 
= Y *ô  

E-o k! .,.. .  
ak(X) • (5.18) 

Eqs. (5.16) and (5.17) read for the components: 

1 • k ^ +  4 - k  ^ 6*t .... , (x)= (8_k)!(/)  ( P  ) Ea t . . . .  kbl...b8 p b l ' " b $ - k ( X ) ,  (5.19) 

2 1 
Slight .cone = - -  / ~ 0  ( - - ~ .  f dlOx [(/3 +)l-2~b*al-.-a2l(x)] p 2 [ ( / 3 + ) l - 2 6 a l . . . a 2 , ( x ) l  

1 1 ^ 
(2•+ 1)! /'l',,,,1jdlOx[~/3+jl-2qb,al...a2t+l~X]] E 

/ ~ 0  

^ +  / - 2  ^ ×-fi--~ip2 [(p ) ~.~...,2,+a(x)] . (5.20) 

These are precisely the light-cone formulae of ref. [24]. We regard their reproduction 
by our formalism as a proof of the correctness of our covariant action (4.7). 

We made this noncovariant digression just to establish the equivalence on-shell of 
our covariant formalism with the standard light-cone gauge results [24]. However, 
within our formalism we are not limited to the noncovariant solution. In fact, the 
system (5.1)-(5.6) for the harmonic superparticle may be solved in a manifestly 
Lorentz covariant form• Its solution is made obvious by: 

(i) Performing a unitary transformation on ¢: 

¢ (z ,  u, c) ~ e#}°q~(z, u, v). (5•21) 

(ii) Performing the change of variables O~ ~ O ± 1/2  a where 

O+1/2a_~= __ l ( u--l /20 + oaj~O ) , 

e- 1/2 a = ( p + ) - 1(/: + 1/20 . aO ). (5.22) 
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Under  the above transformations the first-quantized constraints are rewritten in the 
form: 

0 
0~.' 

- iO ~ I/2 + 2( v+I/2o, fl) p2, 
O0-1/2, a 

= a U s -  + 0 +1/2a 
UP" OUI~ b OU#a 00:1 /2  

__0+1/2 b _ _ 0  ] 
OOa k 1/2 ' 

b_+={(o+l:o o ) (  o o) 
0021/2 021/2 00a -I/2 q_ 1 0 + l / 2 a  0 - 1 / 2 a  00+1/2a O0-1/2a 

(5.23) 

and D +" remains unchanged as in (3.8) because of the property: 

D+aO + 1/2 b = O. (5.24) 

Inserting (5.23) into eqs. (5.1)-(5.6) we get the Lorentz-covariant solution: 

o 

+1/2,k -k/2 V), (5.25) ~ ( Z , U , O ) =  l o + l / 2 a ' . . . O  I~a,...ak(P,U , 
k=O 

D +%h-k~2 (- 0) O, ,ral...as\l J, U, 

2.-k/2  / 0) O. P %~ .... st P, u, = (5.26) 

Comparing (5.25) with (5.18) we see that the fields ~al...---k/2akt" P, U, V) satisfying (5.26), 
when considered in the x representation, are precisely the Lorentz-covariant form of 
the GS light-cone component fields ~al... as(x) in (5.18). 

Now, accounting for (5.23) and (5.24) we are able to wri te  down an off-shell 
Lorentz covariant reality condition for the superfield wave function consistent with 
all the constraint equations (5.1)-(5.6): 

[ e ( - p ,  o '+:o ,  ( o'-1: °) ", o, u, o)1" 

= ( p + ) 4 f  dSt~+l/2a exp( i ( p  + ) - l (O+l /2a )*~a  +1/2 } 

x e(p,  ,+1/2 °, o,-1/2., ~,. ,  0). 

On-shell, eq. (5.27) reduces to (5.16). 

(5.27) 
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Hereby, the quantized N = 2 harmonic superparticle provides a covariant on-shell 
description of the linearized D = 10 liB supergravity multiplet. The off-shell (i.e. 
action-principle) description will be given in the next section. 

6. BFV-BRST quantization 

According to the general theory [4], the BRST charge QBRST may contain higher 
order ghost terms if the canonical PB relations among the first-class constraints 
involve nontrivial first-order structure functions (i.e. structure "constants" of the 
algebra of constraints which depend on the canonical variables). 

The latter situation indeed arises in one of the PB relations for the harmonic 
superparticle constraints (the first line in eq. (4.11)). 

However, one can check straightforwardly, e.g. by using the explicit formulas of 
ref. [4], that in the present case, the second order structure functions and, therefore, 
all higher structure functions identically vanish. This is due to the fact that the 
nontrivial structure function in (4.11) does not depend on the canonical momenta of 
the harmonic variables. 

Thus, QBRST of the N = 2 harmonic superparticle (4.7) is first rank*: 

QBRST ---- Q0 + Qharmonic, 

[ (o 
Q o = a  -1 c p 2 + i  C Oc 

0 

Oc 

where a - V~-X-, 

(6.1) 

1)  0 ]  o a 
2 -~  +i -~a-~  +2aDO+x~I/2D+I/Za 

0 0 0 0 
(6.2) a~l,o Of( ~ Ü~paa/2 0~+1/2a' 

[Dab + X_l /2a  8 x - l ~ 2  b 0 
Q harrnonic i~b  

l OXb 1/2 OXa 1/2 

[ o o] 
+i~l D - + - I X a l / 2 ~ X a l / 2  ~ a  ~ 

o o o 0 • _ q-a 
+tBaD + i - -  - -  + i - -  

OA~b O~ ~b OA +- 0~ 

0 0 - -  + , l - a - -  - ~l - b -  
O~f 0712 

s°] 
+ ~'~ 0 nbd 

0 0 
- -  + i 0---X-s: 0 ~+ " (6.3) 

* This form of QBRST iS obtained from the standard form by usin~the unitary transformation [25]: 
QBRST "> UQBRsT U-l, lnU = -(lna)( c 8/0c + ~ 0 / 0 ~ -  1), a --- ~ - .  
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The variables appearing in the above expression of the BRST charge are organized 
as follows: 

Lagrange multiplier ghost antighost of the constraint - 
a c ~ p2  

ipa 1/2 Xa 1/2 ~ a  +1/2 o + l / 2 a  

A ab )lab Jab Dab 

A +- )l ~ D -+ 
A-~ )l-a ~+a D+a 

It will be useful in the following to give the common name ~" to all these variables: 

= (~,  c, ~; ~, ~, ~; ~;1 / : ,  x~ l / : ,  _--+1/:. Xa , 

Aab, )lab, Jab; A+-, )l, ~; A ' a ,  )l-a, ~+a). (6.4) 

Let us note that the part Qo of (6.2) almost coincides with the naive BRST charge of 
the system (2.14) which ignores the reducibility of the constraints (~D)~*: 

a 1 
Q"~ave=a-l[cp2+i(C Oc 2 ) ~ ]  

0 a 

0 0 O 

-(x~x")~Oc o~,~ o~ 
a 0 

a~,# a ~  (6.5) 

As one can see, comparing (6.5) with (6.1)-(6.3), the correct procedure produces two 
kind of effects: 

(a) In place of the ghosts X t), corresponding to the reducible set of constraints 

(~)~, 

one must use the ghosts Xa 1/2 corresponding to the irreducible constraints 

~ a  + 1/2. 

* The analog naive result for the GS superstring can be found in ref. [26]. 
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The two sets of ghosts are in fact related by the following harmonic projection: 

2 
X a  1 / 2 =  + (o+l/20a~X) • 

P 

(b) A new part Qharmonic (6.3) arises in QBRST (6.1) accounting for the purely 
harmonic constraints. Since the latter generate a Lie algebra (3.9), eq. (6.3) has the 
standard form of the BRST charge for a non-abelian gauge theory [4, 5]. 

Therefore, even though the functional dependence of the constraints ~d (2.12) 
has a nontrivial effect on QBRS'r (and requires a lot of technical ingenuity to treat) 
the end result turns out remarkably simple. 

Starting with the QBRS'r (6.1) we are now able to write down a covariant 
unconstrained superfield action for the linearized D = 10 IIB supergravity along the 
lines of the Neveu-West approach [17]. 

Choosing a BFV gauge function '/" = 0/9c ,  the first quantized BFV hamiltonian 
[4] 

HBFV = QBRST, -~C = a-1 p2 + i.~c 

has the same form as the one of the ordinary bosonic particle. 
Accordingly, we find the following second-quantized BRST action: 

S..sT = f d~'dZd~" [/~(p+)2~(T, Z, ~)] 

[ 1( 00 ] 
X iO,:--- p2+i-~c- ~ [ ( p + ) 2 ~ ( ' , Z , ~ ) ] ,  

Z -  (z, u, v). (6.6) 

The operator /(  acts on ~-coordinates (6.4) only by changing the signs of all the 
Lagrange multipliers and of the bosonic ghosts XS1/2: 

g ~ ( ~ ,  z ,  ~) = ~(~,  z; - ~  .. . .  ; _ ~ , . . . ;  _ ~ / 2 ,  _ x ~ / 2 , . . .  ; 

--Aab . . . .  ; - A  +-,...," - A  +", . . . .  ) (6.7) 

The two factors (p+)2 (recall that p + - v + l / 2 / p v  +1/2 is Lorentz invariant 
because the superscript + is internal) in (6.6) are needed to compensate for the 
SO(l, 1) charge ( - 4) of the measure d~. 

The action (6.6) is invariant under the (second-quantized) BRST-transformation: 

8BRSTO('r, Z, ~) = AQBRsT~(, , Z, ~) (6.8) 

due to the operator identity: 

/~QBRsT = -- (QBRsT) T/~" (6.9) 
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The superscript "T" means operator transposition and A is a hermitian and 
anticommuting global parameter. 

We impose the following covariant off-shell reality condition: 

~*(T, Z, ~) = ff/(~ (~-, Z, ~'). (6.10) 

ff denotes the operator of grassmannian Fourier transform of exactly the same form 
as in eq. (5.27) (i.e. F acts only on the original harmonic superspace coordinates 
(x~, 0~, ~., u, v)). 

Let us note that by construction: 

[Qav.ST, F] =0 .  (6.11) 

This, and (6.9), insures the consistency of the reality condition (6.10) with the 
symmetries (6.8). 

One can now further simplify our action by taking the Fourier transform with 
respect to those variables which change sign under the action o f / f  (6.7): 

* (  T, Z;  ot . . . .  ; t]~, 8 . . . .  ~a  1/2, Xa l /2 , . . .  ; Aab . . . .  ; A  +-,. . .  ; A -a .... ) 

= (p+)-s '  / - -~ fdydl ,g, .dS[b+l/2dS~;1/:dY~bdy_+ d s y +  a 

× exp{ i a y +  ~ q ~  + 0/~1/2¢ +1/2~ + ip+Xal/2~ -1/:~ 

+ iA~bYab + iA +- Y-+ + iA -~Y+~ } 

x 4,(~, z;  y , . . . ,  ¢ . . . . .  ~21/:, ~;~/2 . . . . .  r o ~  . . . . .  r - +  . . . . .  r + ° , . . . ) .  

Then the action (6.6) acquires the form: 

S~Rs~ = f d~'dZdg [ (p+) -2*(~ ,  Z, g)] 

[ o o o/] L 
X gy O* i ~ c -  ~ ( p + ) - : ~ ( , ,  Z, g)] (6.12) 

and the reality condition (6.10) becomes: 

**(~', Z, g) = ff*(~', Z, ~ .  (6.13) 

The construction of a covariant unconstrained superfield action for the linearized 
D = 10 IIB supergravity is an interesting result as it circumvents an existing no-go 
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theorem [29]. The loophole which allows us to avoid this no go theorem can be 
traced to the fact that the "ghost-haunted" harmonic superfield 0(7, Z, ~), while 
describing on shell a finite number of degrees of freedom, contains off shell an 
infinite number of gauge and auxiliary superfields. Analogous no-go theorems were 
circumvented in the past by the D = 4 harmonic superspace approach [20]. 

In eq. (6.12) we observe the existence of a few Parisi-Sourlas [27, 30] symmetries 
under OSp(1,112) rotations [17, 25, 31] in the subspaces parametrized respectively 

by: (~', y; c, ~), 

( ~ , ) ~ ;  0~, q~), for each a ,  

(~-1/2, ~+ x/2; 0a- 1/2~+ t/2), for each a. 

(0~ -1/2 was defined in eq. (5.22).) Note that the SO(1,9) and SO(8) indices are 
internal with respect to the OSp(1,112 ) rotations. Thus, after Parisi-Sourlas dimen- 
sional reduction [27, 28, 30, 31] we get the reduced BRST action: 

s(r~l) f dlopdaOa+l/2dudvdYabd~l~bd~labdY-+ d~ld~idY+ d~12 d~l+ BRST 

X[(p+)-Z~,reOlp"[(p+)-Z~red], 
~ r e d  = ~ r e d ( e ,  0 + 1 / 2 ,  U, O, Yab . . . . .  ~ a ) ,  (6.14) 

which is invariant under the reduced (second quantized) BRST transformation: 

~ A / ' )  (red) d~ red ~BRSTI~) red ~- ~ B R S T  ~ , 

~ab a 0 
rStred)BRS.r__i,l~b D + ~d o------bd 

0 • - +a yab + ~ D - ~-a-----i - 

0 0 _b 0 ) 
- - -  b - - + r l - a - - - - r l  

~d O~lad 0716 

0 0 
y - +  _ y + a  (6.15) 

0~ 0~ +a " 

H e r e  ~)ab, ~)--+ are the same as in (5.23). We didn't find yet an explicit realization 
of the further Parisi-Sourlas OSp(1,112) symmetries acting on the subspaces spanned 
by the harmonics and ghosts, antighosts and (Fourier transformed) Lagrange 
multipliers associated with the harmonic constraints. The difficulty is with the 
constrained nature of the harmonics (3.4). 

Nevertheless we can verify that the field equations of motion corresponding to 
(6.14): 

p 2 ~ r e d  = O, 
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together with the physical state conditions [32] (G is the ghost-number operator): 

0 (r~T ~(red) ---- O, 

G~ (tea) = 0, 

~(red) -- ~(red) at_ O~@T~, for any @, 

yield the same Lorentz-covariant solution ~(z, u, v) (5.25), (5.26) as for the Dirac 
constrained equations (5.1)-(5.6). This can be easily shown by repeating the steps of 
ref. [17]. Here: 

~ ( Z ,  U, O) = ~(red)(p, 0+1/2, U, U, Yab,  Y-+ Y+~ ' a ] ,  

0 Y~---~ ~°~ed) = 0 Y----'7 ~0 (red) = ~ y+ ~0 (red) = 0 

and ~o ~¢d) is the zeroth order term in the ghost-expansion of ~('~). 

7. Conclusions 

In the present paper we succeeded to reformulate the D = 10, N = 2 BS superpar- 
ticle as a constrained system possessing Lorentz-covariant and functionally indepen- 
dent first-class constraints only. 

The key ingredient of our formalism was the introduction of additional (pure 
gauge) bosonic degrees of freedom - Lorentz vector - and Lorentz spinor harmon- 
ics corresponding to the homogenous space SO(l, 9)/(SO(8) × SO(l, 1)). 

Unlike the previously proposed D = 10 light-cone harmonic superspace [21], the 
present light-like vectors u f  are constructed as bilinear composites of the Lorentz- 
spinor harmonics of  1/2. Also the SO(8) indices of the space-like vectors u~ are 
SO(8) (s)-spinorial rather than SO(8)-vector ones. 

The last two properties of the above harmonics are crucial in two contexts: 
(a) In the Lorentz-covariant separation of the set of functionally independent 

first class constraints. 
(b) In proving the physical equivalence of the covariant N = 2 harmonic super- 

particle with the standard N = 2 BS superparticle treated in the light-cone for- 
malism. 

We also succeeded to find a covariant unconstrained superfield action of the 
D = 10 linearized liB supergravity. The construction of the complete nonlinear 
action within the Neveu-West approach is, of course, a notorious cumbersome task. 
To perform it one would have to find simultaneously both the infinite number of 
higher nonlinear terms in the BRST action (6.6) as well as the infinite number of 
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higher nonlinear terms in the BRST transformation law (6.8) in such a way that the 
complete action remains BRST-invariant. 

On the other hand, we know that the non-covariant type II superstring field 
action contains no more than cubic interaction terms [33]. Therefore, the generaliza- 
tion of the present harmonic superspace formalism to the case of the GS superstring 
may be expected to provide the correct tractable framework for a complete 
derivation of the covariant interacting type II superstring field action. 

The immediate task towards the extension of our results to the GS superstring is 
to identify the right combinations of the fermionic constraints (analog to (4.1)) 
which permit the reduction of the system to a first-class one by the elimination of 
the analog of the "gauge fixing condition" (4.4). This task is now under way. 

It is amusing that the present work gives a happy illustration of the previously 
recognized fact [4] that the rank, level and class of a constrained system are not 
absolute properties, but depend on the choice of variables. The success of our 
treatment is due to the fact that using harmonic superspace variables we reduce the 
rank to one, the level to zero and the class to first which are the values for the usual 
simple gauge systems. 

We are grateful for the warm hospitality and the stimulating atmosphere of the 
CERN Theory Division where this work was initiated. Two of us (E.N. and S.P.) are 
deeply indebted to E. Sokatchev and S. Kalitzin for numerous illuminating discus- 
sions and for teaching us the fundamentals of harmonic superspace. It is a pleasure 
for E.N. and S.P. to thank also the Weizmann Institute of Science, Rehovot, 
for most cordial hospitality. One of us (S.S) would like to thank J-W 
van Holten and Y. Eisenberg for very instructive discussions. 

Appendix A 

D = 10 A N D  D = 8 S P I N O R  C O N V E N T I O N S  

The D = 10 T-matrices and D = 10 charge conjugation matrix are taken in the 
following representation: 

o ' 

( 0 ~ 
C~o = ( -  C) ~ 

rH= ror~...rg= ( ~ ° -~° ). 
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Indices  of  D = 10 left- (right-) handed  M W  spinors ~ ,  ~ are raised by  means  of  

Clo: 

¢ = ( - C) ~%~,  

~o = c o ~ .  

T h r o u g h o u t  the pape r  we use D = 10 o-matr ices  with undot ted  indices only: 

( ° " )  °~ = C ° ~ ( a . ) ~ ,  

*/~, = diag( - ,  + . . . . .  + ) .  

T h e  s t anda rd  basis  in the space of the -/-matrices is 

Ft'~~'"-F[t '~Ft'=.. .Ft '"l ,  n = 0 , 1  . . . . .  10, 

where  the square  brackets  denote  ant i symmetr iza t ion  with respect  to the enclosed 
indices. These  matr ices  have the following properties:  

(r", . . ."=,+,ci~l)T = (-- 1)~r , , . . . ,= ,+,c£~,  

(C~ozr,',...~'=.)'r=(-a)r+iCzoV,.,~...~,=, ' 

1 
r . , . . . . r "  = ( - 1 )  "("-x)/2 (10 - n) !  e",---" . ' ,  .... ,0- .r . ,  . . . .  ,0_. 

X t r (F" ,  ""tt"FVl . . . . .  ) 

[ n"'" "'" / 
. . . . . . .  - 1 6 ~ " ' ~ ( -  1) T M  det | - - -  n"~" . (A.1)  

~ , . , ,  . . .  ~ . , . ]  

where  In] = n for  n = even and [hi = n + 1 for  n = odd. 
Eqs. (A.1) imply  for  the o matr ices  o~, "~ ' -  - o [ ~ . . ,  ot'.]: 

( o  m ...,z,.+,) °''s = ( - 1 ) r ( o ~ , ,  . . . ,z ,+,)  #a ; (A.2)  

1 
( o "  .... "~,*1)~ O= ( - 1 )  *+1 ~ p'I'''~I~2r+lpl . . . .  9 -2r (a  

(9 - 2 r ) !  , , , - - . , , - 2 , , ~ , '  

1 
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Accounting for (A.2), (A.3) and (A.1) any (anti-)symmetric matrix A sym (h  asym) on 
the D = 10 spinor space can be decomposed as follows: 

a s y m  _ _  ,~# - EA[.lo[~ 1, (A.4) 
[~] 

where [/1] =/1 , [ / 11  . - . /15] ,  

d a s y  m ~ z~  * , r " 1 " 2 " 3  
z~- [ . 1 . 2 . 3  ] u a  f l  ' 

A ,  - 1 3sym~ aft 
= 1 6 Z a a f l  ~.'. , 

1 
A[.~,:.~] 16(3!) --~ '  -,1,2,3' 

1 
- -  d sym~ aft 

At,, ...,,1 32(5!) ~"# `% " " " "  

Note that the coefficient A[,, ...~,51 is self-dual due to (A.3). 
Let us also list the following useful properties of the D = 10 o-matrices: 

(o~)"~(o.)'~ + (oy~(o.)"~+ (o.)~(~.)~ = 0, 

t l . O p ]  . . . ~ .  = O . / , - p z  . . .  v , ,  .1_ ( -  1) kT/~'~kO "1 ' t" .... ", (A.5) 
k = l  

where lc means that the index rk is missing. 
For the D = 8 -/-matrices and 

following representation: 

~ =  

D = 8  

0 

charge conjugation matrix we use the 

0 

o) 
C8 = ( _ C ) ~  ' 

Cab= C b" 

Indices of SO(8) (s) and (c) spinors q)., ~n are raised as: 

,a= Ca%, +~= (_ C)~+~ 
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Appendix B 

A L G E B R A I C  P R O P E R T I E S  O F  H A R M O N I C  E X P A N S I O N S  

The harmonic expansion of a general field ~ (5.7) involves products of tensors: 

U[~] = v + 1/20[~]  v + 1 / 2 ,  

r[~] = v + l / 2 o [ i q v  - 1 / 2  , 

for [#] =/~, [ttl/t 2/~3], [/~1 .-. ~t5]. Note that 
+ 

u[~1~,2~3 ] - 0 

because of antisymmetry of 0~,1~ 3 (A.2). Now, using the properties (A.5) of the 
o-matrices one can easily verify the following identities for the traces in products of 

ut~ 1 a n d / o r  rt~]: 

U ~ U + ~ = 0 ,  

U ~ U  +t*~ . . . v4  = O,  

4! 
r~u + ~ l  ... ~, = _ liu ~+_ r I~Pl " "  v4 ~-  - -  u S: t ' t r  v2v3~41 

u f r  ~ x =  + ( r ~ u ± X - r X u + ~ ) .  (B.1) 

Similarly, from (A.5) one easily gets that all further traces: 

+ U + ~ 1  ... h4 
U ~v 1 . . .  o4 

r~tvt v 2 u ± it)~t . . .  h a , 

rl~v 1 . . .  1'4 u ± t ~ t  . . .  h 4 ,  

+ ' + with shorter are expressed by  products of two ut~ ] s or of one ut~ ] and one r t .  1 
index sets and without further traces. These identities lead to the restrictions (5.10) 
on the tensor coefficient fields in (5.7). 

Finally, let us list the following important properties of the harmonic derivatives 
D +~ (3.8) which are necessary for the proof of (5.11): 

D + a u ~ ]  = O ,  

D + a u ~  = U~,  

+a b ab  + = C u~, D up 

D + a u  - ~_ , (  a + U U U __ + a u U ) t t l . . .P5 • h [/~1 P2.. .Ps] h [Pt tt2...Ps] 

D + a r  b = D + a r b l b 2 b 3  = D + a r  bl "'" bs = 0 ,  (B.2) 

where r bl "'" b5 = U~ xol . . .  ub~r~l~'5 ...~'5 and similarly for r 6, r b~o263. 
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Appendix C 

EQUIVALENCE BETWEEN 2n REAL SECOND-CLASS AND n HOLOMORPHIC 
FIRST-CLASS CONSTRAINTS 

Let us consider  a dynamical  system which possesses a conjugated pair  of  

fe rmionic*  second class constraints gA, A = 1, 2, satisfying: 

( gA, gs  } eB = 2i//AB " (C.1) 

By an appropr ia te  canonical  t ransformation one can always c h o o s e -  at least 

local ly - the phase-space coordinates (epl, q~2, X, P¢I, P*2, Px), such that: 

gA = iP,A + q'A, A = 1 ,2 .  (C.2) 

Then,  in t roducing instead of  the original real ant icommuting coordinates and 

momenta ,  the holomorphic  ones: 

= + i ¢ 2 ) ,  

~ = f~-(ff l  - i~2),  

P,= V~ (P,h + iP~), 

~ ,=  ~/~ ( p,  - ip~,~), 

( fi4,, t~ )pB = ( p , , ~ ) p B  = 1, (C.3) 

the relations (C.1) are written as: 

( g, g)pB = (g ,  g)pB = 0  , 

( g, g)PB = 2i (C.4) 

where  

g = f~ - (g l  +ig2)=iP~+eP, 

g, = ~ (gx - ig2) = i~, + ~. 

D u e  to the second class constraints (C.2) we have to use in place of  the Poisson 

* The choice of the constraints to be fermionic is not essential. It is made here only to fit the 
application to the present context. 
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brackets, Dirac brackets (DB): 

(~A, q)B }DB = ½i~$An , 

which equivalently can be rewritten in the holomorphic coordinates (C.3) as: 

(c.5) 

Let us now demonstrate that the standard canonical quantization of the system in 
terms of the Dirac brackets (C.5) is equivalent to the canonically quantized system 
with one holomorphic first-class constraint: 

g = O, (C.6) 

whereby g = 0 is discarded as an (antiholomorphic) gauge fixing condition, which, 
according to (C.4), fixes the gauge invariance associated with (C.6)*. 

We start by treating the second-class system, then, we will treat the first-class one. 
In the end, we will compare the results and recognize their identity. 

For the second-class system we write the quantized Dirac brackets (C.5): 

( , , , 1  = 

They coincide (up to a factor of ½) with the algebra of a pair of fermion creation 
and annihilation operators. 

Then, the wave functions in the holomorphic representation [34] are of the form: 

x )  = ro( X) +  ,FI( X) ,  (C.7) 

where ~ is a complex anticommuting coordinate (such functions are called holomor- 
phic). 

Let us now quantize the system with the holomorphic first class constraint (C.6) 
d la Dirac: ( 0  / 

~ F ( , , q ~ , X ) =  - ~ - - ~ + ,  F ( , ,  q), X) = 0. 

One gets the general solution (recall that ~ and ~ are a pair of complex conjugated 
anticommuting coordinates (C.3)): 

F ( , ,  ~, X) = e*~F(q,, X) = e**[Fo(X) + , F I ( X ) ] .  (C.8) 

* This procedure can be straightforwardly generalized to the case when gA carry indices: ( g,~, g~ } = 
2iSARC "h, C ab = C b~, a, b = 1 . . . . .  n. 
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Thus, both (C.7) and (C.8) describe the same physical degrees of freedom by the 
two-component wave function (F0(X), FI(X)). The equivalence is proven. 

We prefer in the present paper the method which uses first class constraints, 
because it allows us to take advantage of the powerful machinery of BFV-BRST 
which was tailored for such constraints. 

Let us now show how the general discussion above applies to the example of the 
N = 2 superparticle. 

The following decomposition of the original MW constraints d,~ (2.3) with the 
help of the harmonics (3.4): 

~ / 2  1 
d~= -~-~ (o%+l/2)"daa+ ~ ( ~ o + o % - l / 2 ) " g A ~  (C.9) 

covariantly separates the 16 real second-class constraints: 

1 
g,~= ~ (o-1/2o~o*da), (C.10) 

from the 16 real first class constraints d,~: 

1 
d~- 2~-  (v+l/2°a~dA)" (C.11) 

(recall that p+-v+l/2~v +1/2 is Lorentz-invariant in spite of the misleading nota- 
tion. This is because the superscript + is internal). The class of the constraints is 
verified by inspecting the Poisson rackets: 

{ ° gA, gB }PB = 2icab~AB' (C.I2) 

( d~, d b )pa = --icabSABp 2 , 

a b _ . (dA, gB}vn- 0 (C.13) 

The holomorphic constraints g+ 1/2 a, ~-  1/2 ~ and d -  1/2 ~ d-  1/2 a (4.1)-(4.4), used 
in the main text, are simply expressed in terms of the real constraints (C.10)-(C.11): 

g+l/2a= ~ [ g~ + ig' ] ~ ga, 
t -= 

l [gr-ig;] 1 
~ -  1/2 a = __~ - a  

d -1/2a _ 1___~[ d~ + ida] 1 
- 207 t = 2 :_Ud a, 

d + l / 2 a  = ~ ~ - -  ~-- ! / 2 p  + d ~ . ( C . 1 4 )  



490 Eo N i s s imov  et  al. / B r i n k - S c h w a r z  superpar t ic le  

In order to rewrite (C.IO) in the canonical form (C.2) we make the following change 
of variables 0 7 ~ q~], ~k]: 

1 1 

! / z p . -  - 

or, inversely: 
1 

~3 = 77  ( : l : oooA) .  (c.15) 

Now we can use a new set of canonical coordinates: 

( p,, ,~, ,~,, u, . )  (c.16) 

instead of the old one (x", 0, A, u, v)*. In particular, the (anti-) holomorphic anti- 
commuting coordinates 0 ±1/2a introduced in (5.22) are expressed in terms of the 
real ~,~, q'3 as: 

O+~:a= T ~ = T *°' 

o _ 1 / 2 , = 1 . _ _ _ L _ [ ~ + i ~ ]  1 ~a. (C.17) 

The real constraints (C.10) and (C.11) and their (anti-) holomorphic linear 
combinations (C.14) take now the simple form: 

g~ = iP¢,, + *.~, 

d , ~  - ' ~ - 1 _ 2 _ , o  
- -  tpq.,,, ~/-J V'A, 

ga= ipg + dp~, 

~" = i~¢ + ~ a , 

d a • a 1 _ 2 A a  = t p ¢  - -  $ b ,  V~ , 

.-a ! 2,Y: (C.18) aT ~= lp~-  2P ~- , 

• We shall no t  need the complicated explicit formulas expressing the new canonical momen ta  
conjugated to (C.16) as functions of the old coordinates and momenta.  
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in terms of the holomorphic coordinates: 

$~ ,/i--~ ¢ ~ _  irkS) -~V 2~, 1 

I~ a = ~ ( 1//~ ÷ i ~ ) ,  

~7o= ~ ( ~ -  i~ ) ,  

491 

where PeA, fie, P,~ are the canonical momenta conjugated to ~,~, q~a, ~a, respectively. 
The Poisson brackets (C.12) become: 

{ g°, g~ } ~ = { g°, r } ~  = 0, 

{ga, gb)p a = 2icab. 

Correspondingly, we get the foUowing Dirac brackets in the holomorphic repre- 
sentation: 

(~°, ¢)D~ = ($°,~b)D~ = O, 

{ ca, ~b )DB= __½icab. (C.19) 

Now, canonically quantizing the N = 2 harmonic superparticle in terms of the 
Dirac brackets (C.19) and accounting for the additional first class constraints d,{ 
(C.11), p2 and the harmonic ones  D ab, D -+ ,  D +a, the solution for the wave 
function reads in the holomorphic representation (cf. eq. (C.7)): 

1 
F =  F(p,  ~, u, v) = E --~°~. . .  ~akFo, o ~ ( p ,  u, o) 

k k! 

P~Fa~ .... ~(p, u , , )  = 0 ,  

O + aFa, .... k( p, U, V ) = 0. (C.20) 

Recalling (C.17), we conclude that the quantum solution (C.20) of the system with 
the second class constraints g,~ (C.10) is identical to the quantum solution (5.25), 
(5.26) of the system with holomorphic first-class constraints g+1/2 a (4.3), (C.14). 
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